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Problem Statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) ≡ h(F (x))

where F : Rn → Rm, h : Rm → R,

and

I h is nonsmooth, piecewise linear, but has a known structure
(cheap to evaluate)

I F is smooth, nonlinear, but has a relatively unknown structure
(expensive to evaluate)

Though h is piecewise linear, F being nonlinear implies f can be
nonlinear
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Laser pulse propagating in a plasma channel
Want to determine the plasma channel properties so the maximum
difference in the laser intensity during propagation is minimized.
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Configuration 1
Configuration 2

f (x) = max {Fi (x)} −min {Fi (x)}
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Formulation

h(y) = max {y} −min {y}
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Formulation

h(F (x)) = max {sin(2x) + 1, cos(2x), x} −min {sin(2x) + 1, cos(2x), x}
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Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad
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Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

Just running a smooth algorithm on a nonsmooth problem may not
converge, or may converge to a nonstationary point.
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A generalized derivative

Definition
For locally Lipschitz continuous functions f : Rn → R, the generalized
Clarke subgradient of f at a point x ∈ Rn is:

∂f (x) = conv
{
ξ ∈ Rn : ξ = lim

x i→x
∇f (x i ) and ∇f (x i ) exists at all x i

}
where conv (·) denotes the convex hull of a set.
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A generalized derivative
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A generalized derivative
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A generalized derivative

I If f is locally Lipschitz continuous and differentiable at x ,
∇f (x) ∈ ∂f (x).

I If f is locally Lipschitz continuous and continuously differentiable at x ,
∇f (x) = ∂f (x).

I 0 ∈ ∂f (x) is a necessary optimality condition for locally Lipschitz
continuous f .
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Steepest descent can have trouble. . .

f (x , y) = max
{
−

5
2
,±2x + 3y ,±5x + 2y

}
Piecewise affine, convex function.
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Steepest descent with exact line search started from any point on the
diagonal lines will converge to (0, 0).
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above the diagonal lines will converge to (0, 0).
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Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),

∞∑
k=0

αk =∞, and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.
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Gradient Sampling
Approaches for nonsmooth optimization

Theorem (Rademacher)

If S ⊂ Rn is open and f : S → R is locally Lipschitz on S , then f is
differentiable almost everywhere on S .

12 of 24.



Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}

2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required
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Trust region methods
Smooth case

1. Build a model mk of f at xk , for example

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pT∇2f (xk)p

2. Find sk that minimizes mk subject to
∥∥sk
∥∥ ≤ ∆k .

3. Evaluate

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

4. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

14 of 24.
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Traditional ρ test
Smooth Case

A model m sufficiently approximates f near x if

|f (x + s)−m(x + s)| ≤ c1∆2 ∀s ∈ B(0,∆)
‖∇f (x + s)−∇m(x + s)‖ ≤ c2∆ ∀s ∈ B(0,∆),

with c1 and c2 independent of ∆ and x .

16 of 24.
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f (xk)− f (xk + sk)
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∣∣∣∣ ≤ c∆k
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We want∣∣∣∣ f (xk)−m(xk) + m(xk + sk)− f (xk + sk)

m(xk)−m(xk + sk)

∣∣∣∣ ≈ c1∆2
k + c1∆2

k

‖∇m(x)‖∆k
≈ c3∆k
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A new ρ test
Composite nonsmooth case

For nonsmooth functions, we do not get this.
If xk and xk + sk are on different sides of the absolute value kink,

‖∇f (x + s)−∇m(x + s)‖ = 2

17 of 24.



A new ρ test
Composite nonsmooth case

But if we include information at both xk and xk + sk when deciding on
sk , then we can ensure our model accurately approximates f on
conv

{
xk , xk + sk

}
.
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A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.
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hx (F (x)) ≥ hs(F (x))
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ρk =
hs(F (xk))− f (xk + sk)

〈−sk ,∇M(xk)∇hs(F (xk))〉 .
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Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .
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Generator set

G k =
⋃

i∈Ih(F (xk ))

{
∇M(xk)∇hi (F (xk))

}
where Ih(F (xk)) is the set of indices for the piecewise affine parts hi

that define h and that are active at F (xk).

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk =
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇M(xk)∇hi (F (y))

}
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Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .
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Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.



Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.



Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.


